

Great Sampford Primary School

Calculation Policy

Updated: November 2019 Reviewed: November 2021

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4 + 3 = 7 Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2

Regrouping to make 10; using ten frames and counters/cubes or using Numicon. 6 + 5	Children to draw the ten frame and counters/cubes. Children to develop an unof equality e.g. Children to develop an unof equality e.g. $6 + \Box = 11$ $6 + 5 = 5 + 6 + 5 = \Box + 6 + 5 = \Box + 10$			
TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
TO + TO using base 10. Continue to develop understanding of partitioning and place value. 36 + 25 105 15 6 1	Chidlren to represent the base 10 in a place value chart. $ \begin{array}{c c} 10s & 1s \\ \hline 111 & \hline \hline 6 & 1 \end{array} $	Looking for ways to make 10. 36 + 25 = 30 + 20 = 50 5 + 5 = 10 50 + 10 + 1 = 61 1 5 36 Formal method: $\frac{+25}{61}$ 1		

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract	
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=	
4 - 3 = 1	XXXX XXX	4 3?	
 Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 - 2 = 4 	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line	
1 2 3 4 5 6 7 8 9 10	12345678910	012345678910	
		46	

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8 - 5, the difference is Children to explore why 9 - 6 = 8 - 5 = 7 - 4 have the same difference. Children to show how they can make 10 by partitioning the subtrahend. 14 - 5 = 9 4 14 - 4 = 10 10 - 1 = 9 Column method or children could count back 7. 4 4 7 4 4 1	
Making 10 using ten frames. 14 - 5 -4 - 1 -4 - 1 -4 - 1 -4 - 1	Children to present the ten frame pictorially and discuss what they did to make 10.		
Column method using base 10. 48-7 10s 1s 48-7 4 4 4 1	Children to represent the base 10 pictorially.		

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 4 + 4 + 4	Children to represent the practical resources in a picture and use a bar model.	$3 \times 4 = 12$ 4 + 4 + 4 = 12
There are 3 equal groups, with 4 in each group.	88 88 88	
Number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four.
Cuisenaire rods can be used too.	1000010000100001 0 4 8 12	3×4=12

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ $2 + 2 + 2 + 2 + 2 = 10$ $10 = 5 + 5$		
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially. $10s 1s 1s 6 0$	Children to be encouraged to show the steps they have taken. 4×15 $10 \ 5$ $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used 40 + 20 = 40 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60		
Formal column method with place value counters (base 10 can also be used.) 3 × 23	Children to represent the counters pictorially. 10s 1s 00 000 00 000 00 000 6 9	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $/ \ 3 \times 3 = 9$ $20 \ 3 \ 60 + 9 = 69$ 23 $\times 3$ <u>69</u>		

Formal column method with place value counters. 6 x 23 100s 10s 1s 100s 10s 1s 100s 1s 100s 10s 1s 1s 1s 100s 1s 1s 1s 1s 100s 1s 1s 1s 1s 10s 1s	e.g. the image below.	the abstract:	Formal written method $6 \times 23 =$ 23 $\times 6$ 138 1 1 1 2 4 $\times 26$ -7 4 4 2 -4 8 0 3 2 2 4 Answer: 3224
23 23 23 23 23 a week. How many loone week?	wim 23 lengths, 6 times engths did she swim in	Find the product of 6 and 23 $6 \times 23 =$ $6 \times 23 =$ 6×23 6×23 6×23 6×23 6×23 6×23 6×23 5×23 6×23 $\times 23 =$ 6×23 $\times 6$ -	Image: state stat

Calculation policy: Division

Key language: share, group, divide, divided by, half.

Short division using place value counters to group. 615 ÷ 5

1. Make 615 with place value counters.

2. How many groups of 5 hundreds can you make with 6 hundred counters?

3. Exchange 1 hundred for 10 tens.

4. How many groups of 5 tens can you make with 11 ten counters?

5. Exchange 1 ten for 10 ones.

6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters 2544 ÷ 12

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

<u>123</u> 5⁶1¹5

1000s	100s 10s 1s	After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens. $12 \begin{array}{c} 0 & 2 & 1 \\ 12 & 2544 \\ 24 \\ 14 \\ 12 \\ 2 \end{array}$
1000s	100s 10s 1s	After exchanging the 2 tens, we 12 2544 have 24 ones. We can group 24 ones 24 into 2 group of 12, which leaves no remainder. 14 22 24 24 0

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?	I have £615 and share it equally between 5 bank accounts. How much will be in each account?	5 615	What is the calculation? What is the answer?		
615 500 100 15	615 pupils need to be put into 5 groups. How many will be in each group?	615 ÷ 5 =	100s	10s	1s 00000 00000 00000