

# Great Sampford Primary School 

## Calculation Policy

Updated: November 2019

## Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.
Combining two parts to make a whole (use other

resources too e.g. eggs, shells, teddy bears, cars). | Children to represent the cubes using dots or crosses. They |
| :--- |
| could put each part on a part whole model too. |
| Four is a part, 3 is a part and the whole |
| is seven. |

| Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$  $080$ | Children to draw the ten frame and counters/cubes. | Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$ |
| :---: | :---: | :---: |
| TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$ | Children to represent the base 10 e.g. lines for tens and dot/crosses for ones. | $41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $+\begin{array}{r} 41 \\ \hline 49 \end{array}$ |
| TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$ | Chidlren to represent the base 10 in a place value chart. | Looking for ways to make 10. |


| Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column-we exchange for 1 ten, when there are 10 tens in the 10 s column- we exchange for 1 hundred. | Chidren to represent the counters in a place value chart, circling when they make an exchange. | 43 |
| :---: | :---: | :---: |
|  | $100 \mathrm{~s}\|10 \mathrm{~s}\| \mathrm{Is}$ |  |
| 100 s 10s s | $00 \quad 0000 \text { pop }$ | $+368$ |
|  |  | 611 |
|  |  | 11 |
| $6 \quad 1 \quad 1$ | $6$ |  |

## Conceptual variation; different ways to ask children to solve 21 + 34



Word problems:
In year 3, there are 21 children and in $\quad 21$
year 4, there are 34 children.
How many children in total?
$+34$
$21+34=55$. Prove it
$21+34=$
!--7=21+34

Calculate the sum of twenty-one and thirty-four.

## 

Missing digit problems:

| $\mathbf{1 0 s}$ | 1s |
| :---: | :---: |
|  | $?$ |
| $?$ | 5 |
| $?$ | $?$ |

## Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.
Physically taking away and removing objects from a whole
(ten frames, Numicon, cubes and other items such as

beanbags could be used). | Children to draw the concrete resources they are using |
| :--- |
| and cross out the correct amount. The bar model can |
| also be used. |

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5 .


Making 10 using ten frames.
14-5


## Column method using base 10 .



Children to draw the cubes/other concrete objects which $\quad$ Find the difference between 8 and 5. they have used or use the bar model to illustrate what they need to calculate.


Children to present the ten frame pictorially and discuss what they did to make 10.


Children to represent the base 10 pictorially.

$8-5$, the difference is $\square$

Children to explore why
$9-6=8-5=7-4$ have the same difference.

Children to show how they can make 10 by partitioning the subtrahend.

$14-4=10$
$10-1=9$
Column method or children could count back 7 .



## Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.
Repeated grouping/repeated addition
$3 \times 4$
$4+4+4$
There are 3 equal groups, with 4 in each group.



## Calculation policy: Division

Key language: share, group, divide, divided by, half.


2d $\div$ 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.
$13 \div 4$
Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 .


|  |  | $=14$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 10 s | IS |  | 10s | 15 |
| - | (1) (1) (1) |  | - |  |
| - | (1) (1) (1) (1) |  | - |  |
| $\bigcirc$ | (1) (1) (1) |  | - |  |



There are 3 whole squares, with 1 left over.

Children to represent the place value counters pictorially.

$13 \div 4-3$ remainder 1
Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
' 3 groups of 4 , with 1 left over'


Children to be able to make sense of the place value counters and write calculations to show the process.

$$
\begin{aligned}
& 42 \div 3 \\
& 42=30+12 \\
& 30 \div 3=10 \\
& 12 \div 3=4 \\
& 10+4=14
\end{aligned}
$$

Short division using place value counters to group.
$615 \div 5$


1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters
$2544 \div 12$

| 1000s | 100s | 10s | 1s |
| :---: | :---: | :---: | :---: |
| -Ө | -90® | O000 | 0000 |
| 1000s | 100s | 10s | Is |
|  |  | गOOO | -రెం |

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds
into groups of 12 which leaves with 1 hundred.

$$
\begin{array}{r}
12 \begin{array}{c}
02 \\
2^{2} 544 \\
\frac{24}{1}
\end{array}
\end{array}
$$

Children to the calculation using the short division scaffold.

## $5 \longdiv { 1 2 3 }$

| 1000s | 100s | 10s | 1 Is |
| :---: | :---: | :---: | :---: |
|  |  |  |  |

$\begin{array}{lc}\text { After exchanging the hundred, we } & 12 \\ \begin{array}{l}\text { have } 14 \text { tens. We can group } 12 \text { tens } \\ \text { into a group of } 12 \text {, which leaves } 2 \text { tens. }\end{array} & \frac{24}{14} \\ & \frac{12}{2}\end{array}$

| 1000s | 100s | 10s | 1 s |
| :---: | :---: | :---: | :---: |
|  |  | $0000$ | $\begin{aligned} & 8088 \\ & 8808 \\ & 8808 \\ & \hline 8088 \\ & \hline \end{aligned}$ |


|  | 0212 |
| :---: | :---: |
| After exchanging the 2 tens, we 12 | $1 2 \longdiv { 2 5 4 4 }$ |
| have 24 ones. We can group 24 ones | 24 |
| into 2 group of 12 , which leaves no remainder | 14 |
|  | 24 |
|  | 24 |

## Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?


I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

## $5 \longdiv { 6 1 5 }$

$615 \div 5=$
$\boldsymbol{f} \boldsymbol{i}=615 \div 5$

What is the calculation?
What is the answer?

| 100 s | 10 s | 1 ls |
| :---: | :---: | :---: |
| $\Theta^{\bullet}-$ |  | 00000 |
| $\Theta^{-}$ | 00000 | 00000 |
|  |  | 00000 |

