|  | EYFS | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Place Value: Counting | Have a deep understanding of number to 10 , including the composition of each number. | Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number. | Count in steps of 2, 3 and 5 from 0 , and in tens from any number, forward and backward. | Count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number. | Count in multiples of 6, 7, 9, 25 and 1000. | Count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000. |  |
|  | Subitise (recognise quantities without counting) up to 5 . | Count numbers to 100 in numerals; count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . |  |  | Count backwards through zero to include negative numbers. | Count forwards and backwards with positive and negative whole numbers, including through zero. |  |
| Place Value: Represent | Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts. | Identify and represent numbers using objects and pictorial representations. | Read and write numbers to at least 100 in numerals and words. | Identify, represent and estimate numbers using different representations. | Identify, represent and estimate numbers using different representations. | Read, write, (order and compare) numbers to at least $1,000,000$ and determine the value of each digit. | Read, write (order and compare) numbers up to 10,000,000 and determine the value of each digit. |
|  | Verbally count beyond 20, recognising the pattern of the counting system. | Read and write numbers to 100 in numerals. | Identify, represent and estimate numbers using different representations, including the numbers line. | Read and write numbers up to 1000 in numerals and in words. | Read Roman numerals to 100 (I to C) and know that over time, the numerical system changed to include the concept of zero and place value. | Read Roman numerals to 1000 (M) and recognise years written in Roman numerals. |  |
|  | Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. | Read and write numbers from 1 to 20 in numerals and words. |  |  |  |  |  |
| Place Value: Use PV and Compare |  | - Given a number, identify one more and one less. | Recognise the place value of each digit in a two-digit number (tens, ones) | Recognise the place value of each digit in a threedigit number (hundreds, tens, ones). | Find 1000 more or less than a given number. | (Read, write) order and compare numbers to at least 1,000,000 and determine the value of each digit. | (Read, write) order and compare numbers up to 10,000,000 and determine the value of each digit. |
|  |  |  | Compare and order numbers from 0 up to 100; use <, > and $=$ signs. | Compare and order numbers up to 1000 . | Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, ones). |  |  |
|  |  |  |  |  | Order and compare numbers beyond 1000. |  |  |
| Place Value: Problems and Rounding | Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally. |  | Use place value and number facts to solve problems. | Solve number problems and practical problems involving these ideas. | Round any number to the nearest 10, 100 or 1000. | Interpret negative numbers in context. | Round any whole number to a required degree of accuracy. |
|  |  |  |  |  | Solve number and practical problems that involve all of the above with increasingly large positive numbers. | Round any number up to 1,000,000 to the nearest 10 , $100,1000,10000$ and 100000. | Use negative numbers in context, and calculate intervals across zero. |
|  |  |  |  |  |  | Solve number problems and practical problems that involve all of the above. | Solve number and practical problems that involve all of the above. |




| Fractions: Read and Write |  | Recognise, find and name a hall as one of two equal parts of an object, shape of quantity. <br> Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity. | Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity. | Count up and down in hundredths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit number or quantities by 10 . <br> Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators. <br> Recognise and use fractions as numbers: units fractions and non-unit fractions with small denominators. | Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. | Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. <br> Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, $2 / 5+$ $4 / 5=6 / 5=11 / 5]$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fractions: Compare |  |  | Recognise the equivalence of 2/4 and 1/2. | Recognise and show, using diagrams, equivalent fractions with small denominators. | Recognise and show, using diagrams, families of common equivalent fractions. | Compare and order fractions whose denominators are all multiples of the same number. | Use common factors to simplify fractions; use common multiples to express fractions in the same denomination. |
|  |  |  |  | Compare and order unit fractions, and fractions with the same denominators. |  |  | Compare and order fractions, including fractions > 1 . |
| Fractions: Calculations |  |  | Write simple fractions for example, $1 / 2$ of $6=3$. | Add and subtract fractions with the same denominator within one whole [for example, $5 / 7+1 / 7=6 / 7]$ | Add and subtract fractions with the same denominator. | Add and subtract fractions with the same denominator and denominators that are multiples of the same number. | Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions. |
|  |  |  |  |  |  | Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams. | Multiply simple pairs of proper fraction, writing the answer in its simplest form [for example, $1 / 4 \times 1 / 2=1 / 8$ ] |
|  |  |  |  |  |  |  | Divide proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6]$ |
| Fractions: Solve Problems |  |  |  | Solve problems that involve all of the above. | Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number. |  |  |
| Decimals: Read and write |  |  |  |  | Recognise and write decimal equivalents of any number of tenths $r$ hundredths. | Read and write decimal numbers as fractions [for example, $0.71=71 / 100]$ | Identify the value of each digit in numbers given to three decimal places. |
|  |  |  |  |  | Recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$. | Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents. |  |




|  |  |  | Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement: Time |  | Sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] | Compare and sequence intervals of time. | Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24hour clocks. | Read, write and convert time between analogue and digital 12- and 24-hour clocks. | Solve problems involving converting between units of times. | Use, read, write and convert between standard units, converting measurements of time from a smaller unit of measure to a larger unit, and vice versa. |
|  |  | Recognise and use language relating to dates, including days of the week, weeks, months and years. | Tell and write the time in five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times. | Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m/p.m, morning, afternoon, noon and midnight. |  |  |  |
|  |  | Tell the time to the hour and half past the hour and draw the hands on a clock face to show these times. | Know the number of minutes in an hour and the number of hours in a day. | Know the number of seconds in a minute and the number of days in each month, year and leap year. | Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to |  |  |
|  |  |  |  | Compare durations of events [for example to calculate the time taken by particular events or tasks]. | ds. |  |  |
| Measurement: Perimeter, Area, Volume |  |  |  | Measure the perimeter of simple 2-D shapes. | Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres. | Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres. | Recognise that shapes with the same areas can have different perimeters and vice versa. |
|  |  |  |  |  |  | Calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres ( $\mathrm{cm}^{2}$ ) and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes. | Recognise when it is possible to use formulae for area and volume of shapes. |
|  |  |  |  |  | Find the area of rectilinear shapes by counting squares. | Estimate volume [for example, using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and capacity [for examples, using water]. | Calculate the area of parallelograms and triangles. |


|  |  |  |  |  |  |  | Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres ( $\mathrm{cm}^{3}$ ) and cubic metres ( $\mathrm{m}^{3}$ ), and extending to other units [for example, $\mathrm{mm}^{3}$ and $\left.\mathrm{km}^{3}\right]$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Geometry: 2-D Shapes | Talk about and explore 2D and 3D shapes (for example, circles, rectangles, triangles and cuboids) using informal and mathematical language: 'sides', 'corners', 'straight', 'flat', 'round'. | Recognise and name common 2-D shapes [for example, rectangles (including squares), circles and triangles. | Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line. | Draw 2-D shapes. | Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes. | Distinguish between regular and irregular polygons based on reasoning about equal sides and angels. | Draw 2-D shapes using given dimensions and angles. |
|  | Select shapes appropriately: flat surfaces for a building, a triangular pattern for a roof, etc. |  | Identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]. |  | Identify lines of symmetry in 2-D shapes presented in different orientations. | Use the properties of rectangles to deduce related facts and find missing lengths and angles. | Compare and classify geometric shapes based on their properties and sizes. |
|  | Combine shapes to make new ones - an arch, a bigger triangle, etc. <br> Select, rotate and manipulate shapes in order to develop spatial reasoning skills. |  | Compare and sort common 2-D shapes and everyday objects. |  |  |  | Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius. |
| Geometry: 3-D Shapes | Compose and decompose shapes so that children can recognise a shape can have other shapes within it, just as numbers can. | Recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]. | Recognise and name common 3-D shapes [for example, subsides (including cubes), pyramids and spheres]. | Make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them. |  | Identify 3-D shapes, including cubes and other cuboids, from 2-D representations. | Recognise, describe and build simple 3-D shapes, including making nets. |
|  |  |  | Compare and sort common 3-D shapes and everyday objects. |  |  |  |  |
| Geometry: Angles and Lines |  |  |  | Recognise angles as a property of shape or description of a turn. | Identify acute and obtuse angles and compare and order angles up to two right angles by size. | Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles. | Find unknown angles in any triangles, quadrilaterals, and regular polygons. |
|  |  |  |  | Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle. | Identify lines of symmetry in 2-D shapes presented in different orientations. | Draw given angles, and measure them in degrees. | Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles. |
|  |  |  |  | Identify horizontal and vertical lines and pairs of perpendicular and parallel lines. | Complete a simple symmetrical figure with respect to a specific line of symmetry. | Identify: angles at a point and one whole turn (total $360^{\circ}$ ).; angles at a point on a straight line and $1 / 2$ a turn (total $180^{\circ}$ ); other multiples of $90^{\circ}$. |  |



